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* General Saddlepoint Approximations 2

* 1. Introduction

Suppose we are interested in the density f, of some statistic T, (x j. "-. x, ) where

x 1 . .-- , x, are n independent identically distributed observations with the underlying

density f . If. after suitable standardization. T, is asymptotically normally distributed, one

:"- can usually improve the approximation of f given by the asymptotic distribution by using

the first few terms of an Edgeworth expansion (cf. Feller 1971. Ch. 16). This is an expansion

in powers of n , where the constant term is the normal density. It turns out in general

that the Edgeworth expansion provides a good approximation in the center of the density. but

can be inaccurate in the tails where it can even become negative. Thus the Edgeworth expan-

sion can be unreliable for calculating tail probabilities (the values usually of interest) when
p..

the sample size is small. Saddlepoint and small sample asymptotic techniques overcome this

problem.

Saddlepoint techniques were used by H. E. Daniels in a pioneering paper in 1954 to

derive an approximation to f , where T, is the mean of x x. • ", x. The key idea is as

follows. The density f n can be written as an integral on the complex plane by means of a

Fourier transform. Since the integrand is of the form exp (n w (z )), the major contribution

to this integral for large n will come from a neighborhood of the saddlepoint z 0, a zero of

w (z). By means of the method of steepest descent, one can then derive a complete expansion

for f , with terms in powers of n Daniels (19:54) also showed that this expansion is

equivalent to that obtained using the idea of the conjugate density (see Cramer, 1938; Khin-

chin, 1949). The key point can be summarized as follows. First recenter the original under-

lying distribution f at the point t, where f , has to be approximated, that is. to f define

its conjugate (or associate) density hl,'. Then use the Edgeworth expansion locally at 1 o with

respect to hi 0 and transform the results back in terms of the original density f . Since t o is

the mean of the conjugate density ht , the Edgeworth expansion at 1 o with respect to h, is in

fact of order n - and provides a good approximation locally at that point.
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Small sample asymptotic techniques which are closely related to saddlepoint techniques

0were introduced by Hampel (1973) and are based on the idea of recentering the original distrn-

bution. The main difference is the expansion of the loge-derivative f f, instead of f .

A consequence of this is that the normalizing constant, that is the constant that makes the

total mass equal 1. must be determined numericall-. Often this turns out to be an advantage -

since this rescaling ma.' improve the approximation. The unusual characteristic of these

approximations is that the first few terms (or even just the leading term) of the expansion -

often give a very accurate approximation in small sample sizes. .O

In the last few years there has been a revival of interest in this area. Small sample

asymptotic approximations are now available for M-estimates :j location (Field and Hampel,

1982; Daniels. 1983) and for general multivariate M-estimators (Field, 1982). Durbin (1980)

applies similar techniques to derive approximations of the density of sufficient estimators.

Field and Ronchetti (1983) derive small sample asymptotic approximations to the tail area of

M-statistics and use them in robust testing. We refer to the papers by Barndorff-Nielson and -

Cox (1979) and Field and Hampel (1982) for an overview and comparison between these new

techniques and the classical ones. .

The main goal of this paper is to show that saddlepoint techniques can be carried out for

general statistics, including for example linear combinations of order statistics. In section 2 we

present the basic idea. We show that whenever an Edgeworth expansion for the density f .

of T, is available, a saddlepoint approximation can be carried out and will in general improve 0

it. In fact, from the Fd/geworth expansion we obtain an approximation for the cumulant gen-

erating function of T,. Using standard saddlepoint techniques we then work out an expan-

sion for f, in powers of n- . In the section 3, we apply this result to L-statistics and in "

sections 4 and 5 we present numerical results for the most efficient L-estimator under the

logistic distribution and for trimmed means of exponential observations. Exact results are "

compared with asymptotic normal, Edgeworth, and saddlepoint approximations. This shows

the accuracy of the latter in very small sample sizes. Finally, in section 6 we outline some

further research directions, including the relationship with bootstrap techniques.
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2. General Saddlepnt Approximations '-

Let x . x,. be n independent identically distributed real valued random variables

with density f and let T, (x . • " x, ) be a real valued statistic. Denote by f the den-

sity of T,. by M, (: )=fe t f (x )dx the moment generating function. by .

/, (t = log M, (t) the cumulant generating function, and by p, (0 = M, (it) the charac-

teristic function.

By Fourier inversion 0..

00f.(x) = (it )e dt. -

fi f M, (nT )e-n dT

7+i cc"'

n f nt (R,, (7 -7, T ---. .)= efltil T, (2.1)"

.-i -c

where 7 is any real number in an interval containing the origin where the moment generat-

ing function exists, and

Rn (T)= K (nT )/n. (2.2)

Note that if T, is the arithmetic mean. R, (T) = K (T the cumulant generating function

of the underlying density f and in this case (2.1) equals formula (2.2) in Daniels (1954).

The idea is to approximate Rn (T) and then apply the saddlepoint technique to the integral in
p

(2.1) along a suitable choice of the path of integration.

Suppose an Edgeworth expansion for fn is available and denote by f the Edgeworth

approximation up to and including the term of order n -I. Let M and K,, be the moment

generating function and the cumulant generating function of f , respectively, and let

R, (T) = K, (nT )/n. Then by (2.1) we have

.•....
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f(X )Zn (X)f(X ( 2.3)
,r oo 0

- Zn(x )+ n(f )  'T (2.4

where Z, (x) = f , x )- f (x). Now the classical Edgeworth expansion provides an

. expansion for R, (7') (see below) and this choice uniformly bounds the error term Z,.

Applying the saddlepoint technique to the integral in (2.4) improves the Edgeworth approxi-

mation by eliminating the term of order n - '. More precisely, from the Edgeworth approxi-

mation (up to the term of order n -I) one can obtain log .(t) and therefore R. (T) in terms

of the cumulants. That is,

T n T2  K3 o'n 2T 3  o4n 3 T4 
-

in (T)=/,nT + +aT + PC3 KnX41, al1 32.5) .
2 6 24

where A, is the mean and oer the variance of T,. Note that 1A = 0(1). o'. = 0(n -').

and K j = 0 (n - J / 2+ 1) for j = 3,4, since we have assumed that the Edgeworth expansion

for f exists. In general. isn and on are not known exactly but expansions of the form -.

A, I+ + o(n- 1/2)
n n: . .

will suffice to keep the same order in the approximation.

Applying the saddlepoint technique (cf. Daniels 1954) to the integral in (2.4) gives the 0

saddlepoint approximation of f with error of order n 1"

S"n1)= ( 2w' e(to) (2.6) .

where T, is the saddlepoint determined as a solution to the equation

R ',, (To) = x

,. and R n and R n denote the first two derivatives of Rn"

, .. ]

-- 2. :0
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Remark " Another approximation for Rn (T can be obtained using 0, (t) given by the Edge-

worth approximation instead of the expansion of log I, Ii 1. This amounts to approximating

R, (T) by

n 2T 2 n 3
0+li

r T 3K3n +3K 4 n n4a,4 T 4 +K ' n b' "
= n- 6 72 . (2.7)

Since the saddlepoint approximation based on (2.7) gives a poorer approximation in the exam-

ples considered than that based on (2.5) we will not include this approach in the numerical

examples presented in sections 4 and 5.

Remark 2; By the same computations as in Daniels (1954) one can expres f n by means of its

conjugate density, namely
n t (R IT 1,-.1

f ,(x ) = • hn .(O). (2.8)

where hn ,. is the conjugate density proportional to e n f (u +x). The choice r=T and

an Edgeworth expansion of hn .(O) leads to the saddlepoint approximation (2.6). Note that the

term of order n disappears because f , is recentered at x through hn.. i.e.

Eh, U = f uh .,(u )du= n R 1)-x = 0

if r" = T., the saddlepoint. However, one can think of other ways of recentering fn. For

instance, one can use the median instead of expectation and solve the equation (for T 1)

f hnrt(u )du = 1/2.

Remark3: An alternative way of approximating the density of a general statistic by means of

sadcelepoint techniques is the following (see Field, 1982). Suppose T. can be written as a JOV

functional T of the empirical distribution function F In i.e. T, = T (F In ). First linearize

T. using the first term of a von Mises expansion (cf. von Mises, 1947)

T, -- T (F) + Ln (T ), (2.9)

where F is the underlying distribution of the observations,

.-.n.%
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L (T ,V ) = U - " (x :1 .° ). (2.101

and IF (x ;T YF ) is the influence function of T at P (cf. Ilampel. 1968. 1974). Now apply

the classical saddlepoint approximation to L,, (T ,V ) which is an average of independent

identically distributed random variables. In preliminary numerical results this approximation

does not perform as well as the one given by (2.6). Moreover. the order of the approximation

based on (2.9) is an open question.

3. Applications to L-statistics

In this section we apply our general saddlepoint technique to derive approximations to

p the density of linear combinations of order statistics. J

We consider statistics of the form

Tn fn- l X. (3.1)

where X(0) <X(2) " X nare the order statistics and c n."',c7 , are weights gen-

erated by a function J (0.1)-R

Cn =J i , i = ." .n. P .

" Typically the conditions imposed on J are those that guarantee the existence of an Edgeworth

expansion (see below).

The distribution properties of lo-statistics have been investigated by many authors. Exact -

distributions under special underlying distributions can he found in Weisberg (1971), Cicchi-

telli (1976). and David (1981). Asymptotic normality of these statistics has been shown under

I different sets of conditions: see, for instance, ('hernoff, (iastwirth. and Johns (1967), Shorack

(1972). Stigler (1974). David (1981). Finally. Ilelmers (1979.1980) and van Zwet (1979)

*:: derived Edgeworth expansions for L-statistics with remainder o (n -I). These will be the basic

S elements of our approximation for we use them in conjunction with the saddlepoint tech-

nique. .

* * * *.h * .... ' S..t....:.-.
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To calculate the saddlepoint approximation to f at x we need to evaluate the func-

tion R (t) and its first two derivatives at the point T ( where T € is such that

R ', (7 o x (3.2)

and Rn (I) is given by equation t2.5).

We would like to he able to plot and study the saddlepoint approximation of the entire

density, so we typically calculate the saddlepoint approximation at about five hundred x coor-

dinates. Thus. the procedure has been implemented as a single precision Fortran program

(within the S statistical environment). The implicit equation (3.2) is solved for each x coor-

dinate using a Newton method. The implemented strategy is to order the x values and choose

a starting point which gives convergence to the required accuracy for the first x value. For

each subsequent point, the initial solution for the Newton method is chosen to be the solution

for the previous x coordinate. Since the solutions do not change much for small changes in

the x coordinate, convergence for subsequent points is rapid and the method is fast and

effective.

Saddlepoint approximations for distributions or tail areas are obtained from the

corresponding density approximations by integrating using Simpson's rule. A high degree of

accuracy is obtained due to the large number (501) points at which the density is evaluated.

4. Example 1: The Most Efficient L-Estimator Under the Logistic Distribution

As a first example of the technique described above we consider the asymptotically first

order efficient L-estimator for the center 0 of the logistic distribution

(x -0)D- 1 ~~+e-(-0)..

This L-estimator has the weight function -"-

J (s) 6s (I-s ).

Thus we are approximating the statistic T, of the form (3.1) where,
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c• 6 -
+ n +1

Ilelmers (19801l derives the Fd~eeworth expansion t or the distribution of ...

T, (T+ = (T, oa, . and for the distribution 01 the related statistic T,** = n11 "T, -i)/ a*.

* where A and a* are the asvmptotic mean and variance. The Edgeworth expansion for the den-

sity of T *,, is given by

f (X (x ( I + dx)1 '~(x -3x )+ -(x 4 -6X' 2+ 3)+ ( - l +5 b..5 1(4.1)
6 24 72J

where, 6(x) is the standari, normal density, K3I = 0, and KO~ 24/ (20n ).This approxi-

mation forms the basis for the saddlepoint approximation. It should be noted that in this case

K3,, = 0 so the term of order n -~disappears in the Edgeworth expansion. Thus. this expan-

sion is of order and should be very competitive with the saddlepoint approximation.

The Edgeworth expansion for T is derived from (4.1) by using the approximations

Mn, = +O(/ n2) (4.2)

and.

1r J3/ n /+0(1 -w2) 3/ n 3/ 2+0 (1/ n 2). (4.3)

*Since the exact mean and variance for the statistic T, are not available, the equations (4.2)

and (4.3) can be used in the saddlepoint method without changing the order of the approxima-

tions.

Numerical results for the distribution of the statistic T,** for sample sizes 3. 4. 10. and

25 are given in tables 4.1-4.4 for the right half of the distribution since the density is sym-

metric. The exact values for the distribution are taken from Helmers (1980). These exact

* values were calculated by numerical integration for sample sizes 3 and 4, and by Monte-Carlo

simulation using 25.0(X) samples for sample sizes, 10 and 25. The rescaled saddlepoint approxi- .-

mation was calculated by integrating the saddlepoint approximation for the density and then

rescaling so that the density integrates to one. This technique was recommended by Hampel-.

(1973) as a method for improving the accuracy of saddlepoint approximations in small sample

_l/: 9
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r sizes. The unsealed saddlepoint approximation for the tail area was calculated by integrating

the rielht tail of the saddlepoint approximation for the density and subtracting from 1. The

values for the Edgeworth approximation were recalculated from the formula given in lel- """

mers (1980).

Figure 4.1 plots the exact distribution. rescaled saddlepoint, Edgeworth. and normal

approximations for sample size three. This plot shows that both the rescaled saddlepoint and

i dfeworth approximations are, in this example. superior to the normal approximation. Figure

4.2 shows the error from the rescaled saddlepoint approximation for the exact. Edgeworth. and

normal approximations. It is clear from this plot that there is some sort of (probably numeri-

cal) error in the circled values of the exact distribution. Figure 4.3 shows the residuals from

the exact distribution (with the value in error eliminated) for the rescaled saddlepoint. Edge- P

* worth, and normal approximations. This plot clearly indicates that the resealed saddlepoint

approximation overall improves the Edgeworth approximation. Also, unlike the Edgeworth

and normal approximations, the rescaled saddlepoint approximation is wider tailed than the p

exact distribution, so its error is in the direction of giving conservative tests and confidence

intervals.

Figure 4.4 shows the residual from the exact distribution for sample size 4. The overall P

impression is essentiall, the same as for sample size 3.

Figure 4.5 shows the residual from the rescaled saddlepoint approximation for the

"exact". normal. and rescaled saddlepoint distributions for sample size 10. In this case the S

exact" values were determined by Monte-Carlo simulation, and Figure 4.5 shows that the

variation in the "exact" values is substantial in comparison to the error in the rescaled

saddlepoint and Edgeworth approximations, so it is more difficult to be certain which approxi- 9

mation is better. Figure 4.6 shows the plot of the error from the "exact" distribution for the

rescaled saddlepoint and Edgeworth approximations. While the curves are no longer smooth

due to the noise in the "exact" values, the impression is much as before. Finally, for sample _

size 25 both the saddlepoint and the Edgeworth approximation are nearly indistinguishable

,.'.- °o.

..................................................................................................................................
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from the exact distribution.

Overall it appears that both the rescaled saddlepoint and Edgeworth approximations vive

very good approximations to the exact distribution of this statistic. The rescaled saddlepoint

technique generall" improves the Edgeworth approximation. and tends to err in the direction

which produces conservative tests and confidence intervals.

While we are not approximatmg the distribution function directly, m practice these

approximations max be used for calculating tail areas. Thus, it is of interest to see how the

unscaled saddlepoint approximation for the distribution performs in the tails. Figure 4.7

shows the right tail area for the right half of the distribution for the exact. unscaled

saddlepoint. rescaled saddlepoint. Edgeworth. and normal distributions. From this plot it is

clear that the unscaled saddlepoint approximation is actually a better approximation in the

tails of the distribution. Figure 4.8 and 4.9 show similar plots for sample sizes 4 and 10. and

these plots show essentially the same behavior.

* 5. Example 2: Trimmed Means of Exponential Observations

This example considers approximations to the distribution of trimmed means of exponen-

tial observations. Let ac and ak, be the fraction of the observations trimmed from the upper

- and lower tails respectively. Thus we consider statistics of the form (3.1) where

0 for i <no of, or n(1-a,,
Ctn n /k otherwise. S

n
where k is the number of non-zero weights. Note that n - c = .

Helmers (1979) derives the Edgeworth expansion for the distribution of 
T* = (T -i, )/ o -, for trimmed linear combinations of order statistics with general

* weights on the observations between the ai and I-a,, sample quantiles. and zero weight on

the remaining observations. This expansion forms the basis for the saddlepoint approximation. .

In the case of linear combinations of exponential order statistics the Edgeworth expansion for

'..-- .. . . . * . .* % .' %.*
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the density of T,1* is given by (4.1) with

..
nn )Kmn (2 a )/ 1 2 )3 1  2

* and

where

1 n

-n '+1 Cn

The exact density, for certain linear combinations of exponential order statistics is given

in David (1981). The density of T, is
I

f nt) (X "'L-exp

where, Win ai

Wnl = 'J1 (ai, -ahn )

and

am =jl Ifl.

for i = 1, "" . n provided aj, eaj, for i j. We will only consider special cases-,

which satisfy this condition.

We first consider the standardized mean of the three center order statistics in a sample of'

five exponential observations. Figures 5.1-5.3 show the exact density and unscaled saddlepoint

approximation compared to the Edgeworth approximation which includes terms up to order

1/ n (high order Edgeworth), the Fdgeworth approximation which includes terms up to order

n - (low order Edgeworth), and the normal approximation. These figures show that none of

the approximations perform particularly well in the left tail of the density. Both of the

Edgeworth approximations even become negative just to the left of the region of support of

the exact density. Of all of the approximations, the high order Edgeworth approximation most

;.. .: .'. ..-.
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closely follows the exact density on the region of positive slope. Neither the saddlepoint or

the normal approximations can ever be negative. The saddlepoint approximation outperforms

the normal approximation except for a small region toward the center of the density.

In the right half of' the density both of the Edgeworth approximations show polynomial

like waves with the lo%% order Edgeworth approximation being distinctly bimodal. The

saddlepoint approximation follows the general shape of the exact density quite closely in this

* half of the density, and is slightly wide-tailed. The +" marks under the right tail in each of

the figures mark the .90, .95_ .975..99, and .995 quantiles of the exact distribution.

Figure 5.4 gives a close up of the density and the approximations in the 10% right tail.

* and Figure 5.5 plots the error in the approximations in the right tail for the standardized

mean of the center three order statistics in a sample of five exponential observations. Figure

5.6 shows the error in the approximations for the mean of the center 9 order statistics in a

, sample of 11 exponential observation. Both of these figures show the same general behavior.

In both sample sizes, the saddlepoint approximation tends to be fairly stable and generally J1-

.. slightly wide throughout the tail except near the 10% point in sample size 11. Both of the

* -Edgeworth approximations show polynomial-like waves. The low order Edgeworth crosses

the exact distribution a couple of times in the tail switching from being too wide to too nar- -

row and back. The low order Edgeworth approximation performs much better than the high

order Edgeworth approximation throughout this region and is competitive with the

saddlepoint approximation in the 5% tail. It is sometimes too narrow however. In the 5% tail,

the error in the normal approximation is only slightly larger in absolute value than the error . -""

in the saddlepoint approximation. but the normal approximation is uniformly narrow.

Figure 5.7 shows the exact distribution and approximations for sample size 5, and Figures

5.7 and 5.8 show the error from the exact distribution for sample sizes 5 and 11 in the 10%"

left tail. As in the case of the density approximations, both of the Edgeworth approximations

become negative. In sample size 5, the saddlepoint approximation performs better than the 0

others throughout the tail except for a small region between the 2.5961 and 5% points where
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the low order Edgeworth approximation crosses the exact distribution. For sample size 11, the

same general pattern can he seen in Figure 5.9.

Figures 5.10-5.12 plot the exact and approximate tail areas for the right 10%, tail. As in

the density case. the error in the Edgeworth approximations shows wavv behavior while the

saddlepoint approximation is uniformly wide. The low order Fdgeworth appears to be the

best approximation in terms of absolute error in the 7.5% tail. The absolute error of the nor-

mal approximation in the 10F% tail is roughly the same as that of the saddlepoint. but is once

again it is uniformly narrow.

6. Discussion and Further Research Directions

In this paper we have presented a technique for converting an Edgeworth approximation -

into a saddlepoint approximation and have applied it to two examples of L-statistics for which

exact results are available. The numerical examples considered show that this saddlepoint

approximation is in general competitive with the Edgeworth approximations. In the first

example. the saddlepoint approximation is a definite improvement. In the second example, the -... .-I

results are mixed. Nevertheless, in both these examples the saddlepoint approximation exhibits

some desirable properties which the Edgeworth approximations do not. First, the saddlepoint

approximation cannot be negative. Second, the saddlepoint approximation is unimodal and does

not show the polynomial-like waves exhibited by the Edgeworth approximations. Thus. the

error in the saddlepoint approximation tends to be locally stable. Finally, the saddlepoint

approximation tends to be wide in the tails so that error is in the direction of giving conserva-

tive tests and confidence intervals. As with the saddlepoint method for means (Daniels, 1954).

a theoretical advantage of this method is that the leading term of the saddlepoint approxima-

tion is the same order as the first two terms of the Edgeworth approximation.

These examples have other interesting features. The second example demonstrates that a

higher order approximation is not necessarily better in spite of its theoretical appeal. In this

example, the low order Edgeworth approximation is far superior to the high order Edgeworth

S.'
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approximation in the right tail in both sample sizes. Both examples show that rescaling does

not always improve the quality of the saddlepoint approximation, especially if interest is in

the tail areas.

Further research directions include application of these techniques to robust regression.

Also. these techniques can be made nonparametric by replacing the underlying distribution by

the empirical distribution as proposed by Field (1984).

The problem discussed in this paper was originated by the interest in the distribution

A
properties of the so-called broadened letter values (bletter values) suggested recently by J.W.

Tukey as an improvement of the usual letter values in exploratory data analysis (cf. Tukev

1977, Mendoza. 1984). Since bletter values are means of blocks of order statistics. the -

saddlepoint approximations derived in this paper can be carried out.
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Exact Distribution and Approximations for Sample Size 3
for the Best l.-F timator under the Logistic Distribution

Rescaled LnLaled
X Exact Saddlepoint Sddlepoint Ltdgeworth Normal

@

0.2 ().5640 0.517 4)6735 0.553 0.5793
0.4 0.0262 0.6217 0.63201 0.6069 0.6554
O. 0.685A 0.6787 0.6874 0.6592 0.7257
0.8 0.7391 0.7314 0.7387 0.7090 0.7881
1.4) 0.7875 0.779(, 0.7854, 0.7582 0.8413
1.2 0.8248 0.8210 0.825,U o.8(32 0.8849
1.4 0.8658 0.8572 0.80 (.8430 (1.9192
I .6 0.8958 0.8877 0.89o8 ().87% 0.9452
1.8 0.9202 0.9130 0.9154 .Ql(N 0.9641
2.0 0.9397 0.933! 0.9353 0.9348 0.9772
2.2 0.9550 0.9499 0.9513 0.9543 0.9861
2.4 0.9669 0.9628 0.9638 0.9691 0.9918 0
2.6 0.9758 0.9727 0.9734 0.9798 0.9953
2.8 0.9825 0.9802 0.9807 0.9873 0.9974
3.0 0.9875 0.9858 0.9862 0.9923 0.9987

Table 4.1

Exact Distribution and Approximations for Sample Size 4
for the Best L-Fistimator under the Logstic Distribution

Rescaled t ns-aled

Exact Saddlepoznt Saddlepoint Edgeworth Normal

0.2 0.5663 0.56,b, 0.5750 0.5601 0.5793
1 0.4 0.6 )7 (.6281 0.6366 ().619() 0.6554 •

(.6 0.0919 O.b877 0.6944 j).h758 0.7257
0.8 0.7469 0.7424 (0.7484 (0.7295 0.7881
1.0 0.7963 0.7914 0.792 0.779(! 0.8413
1.2 0.8391 0.8341 0.8379 (.82,6 0.8849

j1.4 0,8752 0.8703 0.8732 0.8627 0.9192
1.6 0.9049 0.9(X)3 0.9026 0.8960 0.9452 0
1.8 0.9287 0.9247 0.9264 0.9235 0.9641
2.0 0.9474 0.9440 0.9453 0.9454 0.9772
2.2 0.9618 0.9591 0.9600 0.9622 0.9861
2.4 0.9726 0.9705 0.9712 0.9748 0.9918
2.6 0.9807 0.9791 0.9796 0.9837 0.9953
2.8 0.9865 0.9854 0.9857 0.9898 0.9974
3.0 0.9907 0.9899 0.9902 0.9939 0.9987

Table 4.2

• . • t o



Exact Distribution and Approximations for Sample Size 10
for the Best L-Estimator under the Logistic Distribution S

Rescaled j Lnwlaed
Exact Saddlepoint Saddlepoint Fdgeworth Normal

0.2 0.5734 0.5725 0.5770 1 -l571 b 0.1579.1
10.4 0.6445 0.6426 0.6468 0.640G 0.6554

(1.6 0.7089 0.708() 0.7115 1 0.705b 0.7257
.S 0.768() 0.7670 0.7698 0.7t)47 (.7881

I., o.819 0.8186 0.8208 0.8164 0.8413
1.2 0.8 2P 0.8622 0.8638 0.8604 0.8849
1.4 o.8985 0.897b I 0.89 0.8966 o.919'I
1.6 0.9275 0.926) , 0.9269 0.9255 0.9452

1.S 0.948b 0.9477 0.9483 0.9478 0.9041
2.4 0.9046 0.9639 0.9644 0.9645 0.9772
2.2 0.9764 0.9757 0.976o 0.976b 0.9861
2.4 0.9845 0.9840 0.9842 0.9850 0.9918 p
2.6 0.9905 0.9897 0.9898 0.9907 0.9953
2.8 0.9937 0.9935 0.9936 0.9944 0.9974
3.0 0.9959 0.9960 0.9961 0.9967 (.9987

Table 4.3

Exact Distribution and Approximations for Sample Size 25 "-
for the Best L-Estimator under the Logistic Distribution

Rescaled I Lnscaled
Exact Saddlepoint Saddlepoint Edgeworth Normal

0.2 (.5785 0.5763 0.5787 0.5762 (.5793
10.4 i 0.6492 0.649 0.6518 0.6496 0.6554

(.6 0.7152 0.7181 0.7196 0.7178 0.7257
1(.8 i 0.7728 07791 0.7803 0.7787 (.7881

1.0 0.8295 0.8317 0.8326 0.8314 i 0.8413
1.2 0.8756 0.8754 0.8761 0.8751 0.8849
1.4 0.91( ) 0.9103 0.9108 0.9102 0.9192 .
1.6 0.9376 0.9373 0.9377 0.9373 0.9452
1.8 0.9580 0.9575 0.9577 0.9576 0.9641
2.0 0.9732 0.9720 0.9722 0.9721 o.9772
2.2 0.9830 0.9821 0.9822 0.9823 0.9861
2.4 0.9895 0.9889 0.9890 0.9891 0.9918
2.6 0.9942 0.9933 0.9933 0.9935 0.9953
2.8 0.9963 0.9961 0.9961 0.9962 0.9974
3.0 0.9982 0.9978 0.9978 0.9979 0.9987

Table 4.4

-) i °
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